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A GRADIENT INEQUALITY FOR NON-DIFFERENTIA©LE FUNCTIONS 

I.    Introduction 

In mathematical programming the following result is very useful: 

THEOREM 1 

Assumption: K   is a nonempty open subset of   Rn ,     f : K -♦ R , f   is 

differentiable on   K , X   is a convex subset of   K . 

Conclusion: f   is convex on   X   if,  and only if,    f(x) - f(y)  > (x - y)Tf'(y) 

for all   x ,  y  e X , 

where   f'{y)   denotes the gradient of   f   at   y . 

The above theorem is stated,  in a slightly weaker form, in [ 8    , 

Vol.   1, p. 405] ; for the sake of completeness we present a proof of Theorem 2 

in Appendix A.   A related result,  extremely useful in programming theory,  and 

discussed in [3] is: 

THEOREM 2 

Assumption: 

Conclusion: 

K  is an open subset of   R? , f : K -* R ,  f   is differ entiable 

on   K , X   is a convex subset of   K , f   is convex on   X , 

x0 e X. 

f(x0) < f(x)   for all   x c  X   if, and only if.   (x - x0)Tf'(xj > i 

for all  x  e X . 

R     denotes the set of all column n-tuple» with real number components, we 
write   R  in place of  R   . r 

At each point of   K ,  all first partial derivatives exist. 



The proof of Theorem 2 is straightforward; if we know that 
T 

(x  -   x0)    f^Xjj) > 0   whenever   x  e X   then a direct application of Theorem 1, 

with   y  = x0 ,  yields:   f(x0) < f(x)   for all   x e X .    Conversely,  if   x0   min- 

imizes   f   on   X   then for each   x e X   and   X.  e (0, 1) ,   since \x + (1 - \)x0 e X , 

we must have:   f(x0) _< f(\x + (1 - X.)x0)   = f(x0 + \(x - x0)) .    As a consequence 

we have: 

f(x0 + \(x - xjj))  - f(Xo) 
 ^  > 0        whenever   \   e (0, 1)     , 

letting   \   approach zero we obtain   (x  -  x0)Tf,(x0)  > 0 . Q. E.D. 

We shall be concerned here with generalizing Theorem 2 by relaxing 

the hypothesis that   f   is differentiable everywhere on   K   (and thus we shall 

actually be able to omit mentioning   K ) , though keeping the requirement 

that   f   be convex on   X .    In case we know only that   f   is convex, we still 

wish to obtain nontrivial characterizations of the fact that   f   has a minimum 

on   X   and, if possible,  obtain some information about the minimizing point 

(i.e.,    XQ).    We will be able to obtain such characterizations when   X   and   f 

are of a special form, though   f   may fail to be differ entiable. 

In what follows we shall frequently apply the so-called Minkowski- 

Farkas lemma and we list it here for reference: 

Lemma 1:   Let   A   be any real   m x n   matrix and let   b   c Rn .    The following 

statements are equivalent: 

(i)   bTTr < 0   whenever   ATir < 0 #    IT e H?"   ,' 

(ii)   there exists an   x   e EP   such that   x > 0 ,   Ax ■ b 

A vector inequality means that the inequality indicated holds for each com- 
ponent. 



II.    Discussion of Special Problem 

Suppose we are given an n-tuple   a  = (aj an) ,  an   n x n   real 

symmetric positive semi-definite matrix C and a real m x n   matrix   A . 

We define: 

(1) 

X  = *? n   {x|Ax < 0} 

T i f{x)  = ax + (x Cx ) 2 for   x € R? 

It is immediate that   X   is a convex cone (it is in fact a "finite cone"),  also   X 

is obviously nonempty because    0  c X .    In addition,  it follows readily from 

a well known inequality   [4   .    Theorem 1 - (ii) ] that   f   is a convex function 
t 

on   RT . 

With   f  and   x  as defined in (1) and  x0   e X   we should like to obtain 

a statement similar to the conclusion in Theorem 2.    Some direct considerations 

lead us to believe that the situation is rather complicated!   We note that 

0  c X   and   f(0)  = 0 , furthermore,  since   X   is a cone, we observe that if 

for any   x c X   we had  f(x)  < 0   then indeed  f   is unbounded below on   X . 

Thus the only situation in which a minimum exists is when a minimizing   x   is 

x    = 0 , and of course   f   does not have a well defined gradient at the origin 

except in case   C   = 0 . 

Pursuing the above line of reasoning let us assume that 

f(x)  = ax + {xTCx )^ > 0  whenever   x   c X   and that, la addition, the minimum 
"" T 

of  f   (I.e.,  zero) Is taken on at some point  x0   such that XQCx0  >0 , and 

thus the gradient of  f  is defined at  x0 . Summarizing the preceding,    x0 

satisfies: 

(2) 

T T 
erf1    ,     Ax0<  0    ,     ax0+ (x0Cx0) = 0     ,     XQCXQ   > 0    . 



T Using (2) the condition that   (x -  XQ)    f (XQ)  > 0   whenever   Ax < 0   may be 

written as: 

(3) a + —^ T 
(xJCx0)* 

x > 0 whenever   Ax < 0 

Up to this point, we have assumed that   x     satisfies (2) and that 0 = £(x0) < f(x) 

whenever   x  € X ; we wrote down (3) as a statement "to be contemplated" and 

have not said anything about the truth or falsity of (3).    However, it is quite 

trivial to show that when   x-    satisfies (2) and if (3) is true then, necessarily, 

f(x0) < f(x)   for all  x   e X .    That is, from the fact that 

(4) xj Cx   < (xjc x0)? t xTCx )* 

which holds for any  x0 , x c R?   [5,  Lemma 1 ]   and (3)   we conclude that 
T        - x   c R!1  and  Ax < 0   implies   f(x) = ax + (xxCx )2   > 0 .   The converse state- 

ment, that one can conclude (3) from (2) and the fact that  f(x) > 0   whenever 

x   e X     follows from Theorem 2 and the fact that  f  is then differentiable and 

convex in some small neighborhood of   x- .    We have thus obtained a character- 
T isation of a minimizing s^ which satisfies   x*Cx0  > 0  .    Before attempting to 

dispose of minimizing   x^e   satisfying   XQCXQ  * 0   (and thus, by (4), Cx0 a 0) 

we observe that (3) is of the form:   Ax < 0   implies   dx < 0 , thus by Lemma 1 

we know that (3) is equivalent to the statement: 

There exists   v e B?11    such that 

(5) _ JF C 
tr > 0     and    'irTA + a + —J? • • 0 

xA »-< 



We observe next that if there exista an  x0   satisfying (2) and (5) then by 

a suitable normalization we should be able to assume   xJc x0   = 1 ; specifically, 
T -1 

letting   z  =  (XQCXQ) ^X0   we obtain from (2) and (5) the conditions: 

(6) 

z e Rn 

Az  < 0 A' IT   >   0 

TrA + a + zTC=0    ,     zTCz  =   1     . 

Again, by using (4), it is trivial to show that if there exist   ir   and   z   satisfying 

<6) then  f{x) > 0   whenever   x € X .    In fact, and this is very crucial to our 

development, we note that the same is true if we relax (6) to read: 

erf1    .     ir e rf*1 

<6') Ac < 0 ir > 0 

T T 
ir*A + a + «*C  = 0    , zTCz    < 1 

We note that (6') is a more "realistic'4 statement in view of the fact that the   z 

needed to satisfy (6) may yield  Cs a 0 .   That is. we should really like to 

conclude (6*) from the fact that   ax + (x Cx r   > 0  whenever   x c H?  and 

Ax < 0 ; this is indeed the case and follows directly from: 

THEOREM 3 

Assumption: 

Conclusion: 

(i)   C *    is a real symmetric   n x n  matrix,   A  is an 

m x n  real matrix,   u     c R? . 
2 T i» 

<li)   (ux)    < x  Tx whenever   x e IT  and  ux > 0 , Ax < 0 . 

Thers exist  ■ C   rf1 , ir c rf"   such that   ir > 0 , A« <  0 , 

u » irTA + 8TC ,   BTC»   <  I . 

The proof of Theorem 3 will be found in Appendix B. 

7 Not necessarily positive semi-definite. 
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As mentioned above,   a direct consequence of Theorem 3 is: 

Lemma 2:   Let   f   and   X  be as in (1), then  f{x) > 0   for all   x e X   if, and only 

if,   there exist   IT   and   z   satisfying (6'). 

Proof:    The sufficiency of {6') is,  as outlined above,  quite clear.    Assuming 

that for each   x  6 X   we have   f(x) > 0   and letting   u  =  -a , we see that the 

assumptions of Theorem 3 hold while the conclusion of Theorem 3 is 

precisely (6'). 

III.    A Nonhomogemeous Problem 

Let us modify (1) so that   X   is defined by the inequalities   Ax < b , 

rather than by Ax < 0 , where   b   is a fixed vector in   R?1 .    First of all, it 

need no longer be true that   x0   = 0  e X , in fact   X   may be empty and to 

dispose of this difficulty we shall assume the contrary, that there exists on 

x € R     such that   Ax < b   or equivalently (according to Lemma 1) that: 

<7) There is no IT e I^11  such that ir > 0 ,  ir   A = 0 ,  irTb < 0     . 

Since X need no longer be a cone, the minimum of f(x) = ax + ^ xTCx )?   on 

X   (when it exists) may be any real number; let us assume that   M   is a 

lower bound of  f   on  X, i.e.« 

(8) ax + (x Cx ) *> M whenever   x c R?   and  Ax < b    . 

With  b  = 0   and   M = 0   we would be in the situation discussed in Section II 

with Lemma 2 applicable.   We shall see now that the more general condition 

(8) may also be characterized in a fashion analogous to the homogeneous case. 

Towards this let us consider the relations: 



(9) IT >  0     ,     Az < Xb 

T T 
irA + a  +  zC=0 IT   b  +  M <  0 zXCz    <   1     , 

and: 

THEOREM 4 

The statement (8) is true if,  and only if,  there exist   z ,  ir   and   \   satisfying (9). 

Proof;   If   ir .  z . X   satisfy (9) and   x e R11   is such that   Ax < b   then: 

0  = ir   Ax + ax +    z Cx   < ir   h + ax +  zTCx 

< -M + ax + ( zTCz )i( xTCx )? 

< -M + ax + (xTCx )i , 

T -!• and thus   M < ax + (x Cx )2   . 

Conversely,  let us assume that (8) is true.    We assert that the 

statement 

(10) 
If   x e R?1    ,      rj e R   are such that 

Ax - nb < 0     ,     n > 0   then  T7M<   ax + (xTCx )i     , 

is true.    Clearly, when   n > 0   (10) holds,   simply consider    rf  x  and compare 

(10) with (8) which is assumed true.    In case   r)  =  0 , we should like to 
T        1 

conclude   ax + (x Cx )s > 0   from   Ax < 0 ; the last follows from the facts 
T - 

that (i) the statement (7) is true and (ii) ax + (xXx)5   is convex,  homogeneous 

and bounded below on the set    {x|Ax < b } .    We next note that (10) is precisely 

analogous to the homogeneous statement in Lemma 2,   applying Lemma 2 we 

see that from the fact that (10) holds it follows that there must exist   IT ,  z   and 

\ satisfying (9). Q.E.D. 

-7- 



IV.    Concluding Remarks 

The following remarks are in order: 

A. Lemma 2 is precisely the principal theorem of [5 ] where it is demonstrated 

directly by using a certain "pseudo-norm" on the set of sequences of points 

in rf1 together with Lemma 1.     Here  Lemma 2 depends ultimately on the 

theorem of Frank-Wolfe |?] that any quadratic function bounded below on 

a polygonal convex set achieves its minimum. 
r 

B. A significant interpretation of Lemma 2 is to think of it as a direct 

generalization of the Minkowski-Farkas theorem (our Lemma 1), because 

the former reduces to the latter when   C  = 0 . 

C. One can think of Lemma 2 as expressing the fact that a certain convex set 

is closed.    The set   T   in question consists of all negatives of   a's   for 

which there exist   a   and   IT   satisfying (6'), these in turn are the tangent 

planes of the convex function   g(x)  = (xTCx )«    over the cone   {x|Ax <0 } . 

In general, for arbitrary convex (and even continuous)   g   this set of 

tangents need not be closed; e.g., if   g   exhibits "assymptotic" behavior, 

a limit of tangents need not be a tangent. 

D. In view of the preceding and also because of the relation of Lemma 2 

to Theorem 2, it would be of interest to generalize Lemma 2 to a larger 

class of   pairs (X,f),  e.g., keeping   X   a finite cone and allowing   f  to 
P T - take the form   f(x)  = ax +    S   (x*Ckx)2, where each   C.    is positive 

k=l K 

s e mi - definite * 



APPENDIX A 
Proof of Theorem 1 

All quanitities are as defined in Theorem 1.    We first demonstrate 

the simpler half of the proof that if 

(11) f(x)  " %> >  (* " y)Tf,<y) whenever   x , y e X    , 

then f     is convex.    Suppose   u , v   are elements of   X   and   X  e [0, 1 ] ,  let 

x = u   and   y  = Ku + (1 - \)v   then from (11) we get: 

<12> '(^u + (1 . \)v) < f(u)  -  (1 - \)(u - v)Tf'(y)     . 

Similarly, letting   x = v  and   y s \u + (1 - \.)v  we obtain from (11): 

<13) '(^u + (1 - Mv) < f(v) + Mu - v)Tf'{y)     . 

Multiplying (12) by   K . and (13) by   (1 - \) , then adding, we obtain the required 

inequality. 

We show next that if  f   is convex on  X   then (11) must hold.    First, 

we show the above true for   n =  1 .then reduce the Reneral case to the one 

dimensional one.    Let us assume that   K  is an open subset of   R  and that 

f   is differentiable on   K , then the convexity of  f   on a convex subset   X   of 

K  is simply the statement that: 

m < (^4)iio) * (f^)f(v) (14) 

whenever   a < ß < y  and   a , -y e   X 

It is readily seen that (14) is equivalent to: 

•9- 

) 



(15) 

*M - Ho) ^ f(v) - m 
ß  -   a      -      y -  ß 

whenever   a   < ß < y   and   a ,  y e X 

Letting first   ß  approach   Y   and then,  independently,  letting   ß   approach   a 

we obtain from (15): 

\ 

(16) 

*W   -    *{*)    <    i'iy) 
O — 

f.{0) < fo> - M 
if  or <  V and   a , y   e X. 

y 
which is in fact equivalent to (15).    Lastly, we note that (16) is equivalent 

to (11).    We just demonstrated that if   n  =   1   and   f   satisfies the assumptions 

of Theorem 1 then (11) must hold whenever   f   is convex. 

Finally,  suppose  n   is any positive integer and   f   is convex on   X 

and satisfies the assumptions of Theorem 1.    Since   K   is open,  for fixed 

x ,  y  c  X  C K ,  there must exist an open interval   I        containing   [0, 1] 
xy 

and such that   \x + (1 - \) y   is in   K  whenever   \   is in   I       .    Defining the 

function   h        on   I       by xy xy     ' 

h    (X)  = f(\x + (1 - \)y)     ,     for   \  c I 
*/ xy 

one checks immediately that   h       must be convex   on   [0,1]  .    Consequently, 

since Theorem 1 holds for   n =   1 , we know that: 

(17) h    (1)  - h    (0) > (1   -  OJh'    (0) xy' xy*      — * '   xy%   ' 

which is precisely the statement (11). Q.E.O. 

-10- 



It should be noted that in the first half of the above proof no u 

made of the properties of the gradient of  f .  thus,   in fact,  the following the 

se was 

orem 
is true. 

THEOREM 5 

Let   f .  K   and   X   satisfy the assumption   of Theorem 1 .   then   f   is convex 

on   X   if,  and only if. there exists a function   G : K   -*   B?   and such that 

f(x)   - f(y)  >  (x -   y)TG(y)      for all   x .   y   €  X . 

Similarly,one notes that the following is true: 

THEOREM 6 

Let   K  be a nonempty open convex subset of   Rn .  f : K —   R ,  then   f  is 

convex and differentiable on   K   if,   and only if.  there exists a continuous 

function   G : K —  Rn   such that 

f(x)   - f(y)  > (x  -   y)TG(y)       for all   x .   y  e K . 

11- 



APPENDIX  B 

Proof of Theorem 3 

Consider the linear inequalities: 

(18) 
z e R   ,    IT e R 

T        T 
Tr>0    ,    Az<0     ,     u=A7r + Cz, 

and let  P consist of all ordered pairs  (ir, z)  satisfying (18).    We show first that 

P is nonempty.    Since (18) represents a system of linear inequalities,  the fact 

that   P   is empty is equivalent, by Lemma 1,  to the fact that there exist   x   and 

y   satisfying: 

x € Rn .     y  c Rm 

(19) 
y>0    ,Ax<0,    Cx = ATy ,    ux > 0 . 

Thus,  if   P   were empty, we would get from (19): 

xTCx = irTAx   <   0 , 

T consequently   x   Cx < 0   which together with   ux > 0   and  Ax < 0   contradicts 

the assumption of Theorem 3.    Thus   P   is nonempty. 

T Next, if for some   (ir, z)  € P   we had   z   Cx <  1   then we would have the 

T desired conclusion of Theorem 3; assume that    z   Cz >   1   whenever  (ir, z)   e   P. 

Applying the result in [7] that a quadratic function defined on a polyhedral convex 

set attains its minimum, we know that there exist   (ITQ, ZQ)  e P   such that 

T T 1 <   ZQCZQ < Z   CZ   for each   (w, z) c P .    Furthermore, it is clear that 

(20) (ZQ C)z0   <    (zJc)z whenever   (ir, z)   € P 

-12- 



Applying Lemma 1 to (20) (essentially,  making use of duality in line 

programming),  we see that there must then exist   TT   and  x   satisfying: 

ar 

(21) Ax < 0     ,     ir > 0     ,     A20  < 0 

u      = A ^  + Cz0     .      Cx  = A^ +  Cz0     ,     ux  = ^pzQ       . 

The following relations then are consequences of (21): 

T T T    T znCzn   =   ZnCx  -   z^A1^ '0^0   "  Ä0 

T T x   Cz0   -  ^^AZQ 

ux -   TTQ Ax  -  wTAz0 

> ux 

=  z0Cz0     ' 

As a result.    u^Ax = w
TAz0   = 0    and   zjc z0   = ux = x1CZo .    However. 

Ax < 0   and   ux >  1 ; thus by assumption in Theorem 3 we have 

0  < (ux)2 <   xTCx    and: 

( xTCx )2   > ux 

"  zJCz0 
= xTCz« 

T T 
=  x Cx     -   ir1 Ax 

T >  xXx 

From the last relations we get    xTCx    <   1   and   thus  ux  < (xTCx)^   < 1 , 

a contradiction. ^  T,   ^ Q.E. D. 

-13- 
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